
kitlist
Building
kitlist - a program to maintain a simple list of items and assign items to one or
more categories.

Required Packages for Desktop Build

Note: Debian 10 (Buster) has dropped the libgconfmm package. By default,
the application is now built without GConf. See the ‘GConf’ section below for
more information.

On a Debian 8 (Jessie) or Debian 9 (Stretch) system, the following packages
need to be installed to build the application:

• intltool
• autoconf-archive
• libgconfmm-2.6-dev (optional)
• libgtkmm-2.4-dev
• libpqxx-dev (pgsql only)
• libtool
• libxml++2.6-dev
• libglademm-2.4-dev
• libglib2.0-dev (optionally required if needing to re-run autogen.sh)
• libyaml-cpp-dev

The application is built and installed with:

$ ./configure
$ make
$ sudo make install

The build may report warnings in relation to std::auto_ptr usage in libxml++
being deprecated. This is expected.

C++ Compiler Flags

Optionally, to use different C++ compiler flags, set the environment variable
CXXFLAGS when running ./configure. E.g.

$ CXXFLAGS="-g -O0 -fno-inline" ./configure

to include debug messages, define KITLIST_DEBUG

$ CXXFLAGS="-g -O0 -fno-inline -DKITLIST_DEBUG" ./configure

Exporting the environment variable G_MESSAGES_DEBUG=ALL will enable debug-
ging to file. The default location is /tmp/kitlist.log which can be amended
using either GConf or the ~/.config/kitlist YAML configuration, depending
whether the application was compiled with --with-gconf.

1

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=885040


Building a Debian Package

On a Debian system, install the build-essential package to install the essential
packages required to build a Debian package from source. Additionally, install
the devscripts package to install packages useful for creating Debian packages.
As Debian no longer include the GConf package, the Kitlist package should be
built without GConf support.

The ./doc folder in the source distribution should include the following files:

• kitlist.1
• userguide.html
• userguide.pdf

They are removed with make maintainer-clean. They can be rebuilt using
Pandoc by installing the following packages:

- pandoc
- texlive
- texlive-latex-extra

then build with:

$ ./configure --enable-build-docs
$ make
$ cd doc
$ make docs

Build an unsigned package:

$ dpkg-buildpackage -us -uc -sa

Build GPG signed changes file and source package:

$ dpkg-buildpackage -sa

If releasing a new version, update the Debian changelog with dch -v
version-revision.

GConf
GConf has been deprecated by the GNOME team. Unless Kitlist is built
--with-gconf, the application follows the XDG Base Directory Specification
storing the configuration settings in $XDG_CONFIG_HOME/kitlist, which will
typically be ~/.config/kitlst. The file is YAML formatted.

The following attributes are stored in GConf:

• Printed Page Title
• Most recently used files
• Debug log file name

2

http://johnmacfarlane.net/pandoc/
https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://yaml.org


Running GConf under MAC OS X and Windows is not straight-forward, so the
XDG style configuration is used for these targets by default and is probably the
better format to use for the future.

To build on Debian 10 (Buster) with gconf support, follow the instructions
below to build gconfmm separately.

1. Install the following Debian package:

• libgconf2-dev

2. Download the latest version of gconfmm e.g. gconfmm-2.28.3.tar.xz
and extract and build it under /usr/local/src.

$ ./configure
$ make
$ sudo make install
$ sudo ldconfig

3. Build Kitlist:

$ ./configure --with-gconf
$ make
$ sudo make install

The --with-gconf parameter for ./configure is not actually required, as gconf
support is automatically included when the library is found, but by providing
the parameter, it ensures an error is generated if the library cannot be found.

Building for Windows
As I no longer have access to a machine running Windows, building on Windows
or cross-compiling for Windows is no longer supported.

In the past, the application could be built for Windows platform using MinGW
or by cross-compiling on Linux. The instructions remain here in case they should
prove useful.

It’s not currently documented and not entirely straight-forward, although I have
not as yet been able to build the application’s alternative language files. However,
this fails after the build is otherwise complete, so interrupting the looping make
file with Ctrl-c does the trick. In any event you need to:

1. Install the MinGW development environment
2. Install various MinGW packages (TODO:: document which packages) to

support the build
3. Install version 2.16 of gtkmm for Windows
4. compile with ‘./configure

3

https://download.gnome.org/sources/gconfmm/2.28/
http://www.mingw.org/
http://www.mingw.org/
http://www.mingw.org/
http://live.gnome.org/gtkmm/MSWindows


Cross Compilation on Linux

The application can be cross-compiled on Linux for a Windows target. These
notes are based on instructions for Cross-compiling GTK+ apps for Windows

Setup the tool chain following the instructions on the MinGW Wiki.

The following settings in x86-mingw32-build.sh.conf worked for me:

assume GCC_VERSION 3.4.5-20060117-2
assume BINUTILS_VERSION 2.19.1
assume RUNTIME_VERSION 3.14
assume W32API_VERSION 3.13-mingw32

Execute the mingw32 build script with an appropriate target. E.g.:

$ sh x86-mingw32-build.sh i686-pc-mingw32

Download the gtkmm developer bundle and install it in a new folder using Wine
(or Windows), then copy the contents to /opt/mingw/i686-pc-mingw32.

Fix the package config files to have the correct prefix and rename the DLLs.

cd /opt/mingw/i686-pc-mingw32
sed -i 's|^prefix=.*$|prefix=/opt/mingw/i686-pc-mingw32|g' lib/pkgconfig/*.pc
cd ./lib
for f in *.lib; do mv $f lib${f%%lib}a; done

Finally, build the kitlist application as follows:

$ export PATH=/opt/mingw/bin:$PATH PKG_CONFIG_PATH=/opt/mingw/i686-pc-mingw32/lib/pkgconfig
$ ./configure --prefix=/opt/mingw/i686-pc-mingw32/ --host=i686-pc-mingw32 --build=i686-pc-linux-gnu
$ make
$ makensis kitlist.nsi

Note: The application does not run under Wine.

Useful Links

• http://www.gtk.org/download-windows.html
• http://live.gnome.org/gtkmm/MSWindows/BuildingGtkmm

Environment Variables
The application can optionally be compiled to use a PostgreSQL database instead
of XML documents, using ./configure --disable-xml-dao. In this case there
are a number of environment variables that can be used to specify various
connection parameters to the PostgreSQL database. These are listed in the
PostgreSQL Documentation. Some of them are mentioned briefly below:

4

http://live.gnome.org/GTK%2B/Win32/Apps
http://www.mingw.org/wiki/LinuxCrossMinGW
http://www.mingw.org/wiki/MinGWiki
http://live.gnome.org/gtkmm/MSWindows
http://www.gtk.org/download-windows.html
http://live.gnome.org/gtkmm/MSWindows/BuildingGtkmm
http://www.postgresql.org/docs/8.1/static/libpq-envars.html


Example Environment Variables

• PGHOST - The database server name
• PGPORT - The port to use
• PGDATABASE - The database name
• PGUSER - The database user name
• PGPASSWORD - The connection password

Internationalisation
1. Translatable strings contained in the program have been written in Amer-

ican English. To create a translation for another language, go to the
po sub-directory and run the following command to update the default
language file ./po/kitlist.pot:

$ cd po
$ intltool-update --pot

2. Copy this file to languagecode.po, e.g. fr.po. This file contains pairs
of strings, one in the default language, the other the translated version,
initially blank. Also add the language to the list in the ./po/LINGUAS file,
and the ALL_LINGUAS entry in ./configur.ac.

3. To merge code changes into a translated po file, e.g. French:

$ intltool-update fr

4. Re-build and re-install the program. To specify the language in a shell,
specify the LANG environment entry and possibly the LANGUAGE environment
variable too, e.g.:

$ locale -a
$ LANG=fr_FR.UTF-8 LANGUAGE=fr_FR.UTF-8 kitlist

If the locale is not installed, run

# dpkg-reconfigure locales

See https://wiki.debian.org/Locale for more information.

Note: the kitlist program must be installed before the language files are picked
up at runtime.

More information in Programming with gtkmm

Using Valgrind
During development and testing, Valgrind can be used to detect memory leaks
in the application. The Kitlist source distribution includes the following files:

.valrindrc
valgrind-non-kitlist.supp

5

https://wiki.debian.org/Locale
http://www.gtkmm.org/docs/gtkmm-2.4/docs/tutorial/html/sec-i18n-marking-strings.html
https://www.valgrind.org


valgrind-kitlist.supp

.valgrindrc contains default values for running valgrind.

valgrind-non-kitlist.supp contains suppressions for reported leaks that ap-
pear unrelated to Kitlist.

valgrind-kitlist.supp contains suppressions for reported leaks that are trig-
gered by Kitlist code, but also appear to be outside the control of Kitlist.

Using the defaults in .valgrindrc, Valgrind’s output is written to valgrind.log
in the distribution’s root directory.

$ export CXXFLAGS="-g -O0 -fno-inline"
$ ./configure
$ make
$ valgrind ./src/kitlist

After examining the output, to quickly create suppressions based on the log
file’s contents, sed can be used to clean the file. It can then be appended to the
suppressions file.

$ sed -E -e '/^==[0-9]+.*/d' valgrind.log >> src/valgrind-non-kitlist.supp

Documentation
The documentation for the code is maintained using Doxygen. Install the
following packages to regenerate the documentation from source:

- doxygen
- texlive
- texlive-latex-extra
- texlive-font-utils

The documentation can be regenerated from the source code as follows:

$ ./configure --enable-build-docs
$ cd doc
$ make docs

The generated Doxygen documentation can be viewed under ../doc/doxygen/.

License
The source code and documentation are licensed under the GPL. See the COPY-
ING and AUTHORS files distributed with the source code for information and
contact details.

6

http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/

	kitlist
	Building
	Required Packages for Desktop Build
	C++ Compiler Flags
	Building a Debian Package

	GConf
	Building for Windows
	Cross Compilation on Linux
	Useful Links

	Environment Variables
	Example Environment Variables

	Internationalisation
	Using Valgrind
	Documentation
	License


